
Beyond Blocks: Python
Session #2

Beyond Blocks : Python : Session #1 by Michael Ball adapted from Glenn Sugden is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License.

CS10 Spring 2013
May 7, 2013
Michael Ball

1Thursday, May 9, 13

http://inst.eecs.berkeley.edu/~cs10/
http://inst.eecs.berkeley.edu/~cs10/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Where to find Information

•Python.org: www.python.org

•Python Docs: www.python.org/doc/

•Python Modules: docs.python.org/modindex.html

Beyond Blocks: Python #2

2Thursday, May 9, 13

http://www.python.org
http://www.python.org
http://docs.python.org/modindex.html
http://docs.python.org/modindex.html
http://docs.python.org/modindex.html
http://docs.python.org/modindex.html

Using Files

$ python3 -i file.py

--Allows you to use an interpreter

$ python3 file.py

-- Simply runs the file.

(Files need not actually say .py; but it’s cleaner
if they do)

Beyond Blocks: Python #2

3Thursday, May 9, 13

BYOB Python
Importing

ERROR!
Hmmmm....

4Thursday, May 9, 13

BYOB Python
Importing

“math” module

5Thursday, May 9, 13

Beyond Blocks: Python #2
Importing

>>> import math
>>> math.cos(1)
0.5403023058681398
>>> from math import cos
>>> cos(1)
0.5403023058681398
>>> math.cos(1)
0.5403023058681398
>>>

module.function(args)

6Thursday, May 9, 13

Beyond Blocks: Python #2
Importing, help!

7Thursday, May 9, 13

Beyond Blocks: Python #2

module.function

Importing, help!

8Thursday, May 9, 13

Beyond Blocks: Python #2
Importing, help!

9Thursday, May 9, 13

Help!
Beyond Blocks: Python #2

10Thursday, May 9, 13

Help!
Beyond Blocks: Python #2

11Thursday, May 9, 13

Help!

Python keyword

Beyond Blocks: Python #2

12Thursday, May 9, 13

Help!

Note the quotes!

Beyond Blocks: Python #2

13Thursday, May 9, 13

Help!
Beyond Blocks: Python #2

14Thursday, May 9, 13

Data Structures
(overview)

• Sequences

• Iterators

• Operators

• Dictionaries

• Hash Tables

15Thursday, May 9, 13

Review++

• Typing, built-in types

• Variables

• Looping and conditionals

• Functions

• Recursion

16Thursday, May 9, 13

Review++

• Typing, built-in types

• Variables

• Looping and conditionals

• Functions

• Recursion

• This week’s content

• Strings and string operators

• Lists, Dictionaries, etc.

17Thursday, May 9, 13

• Numeric types

• <int>, <float>, <long>

• Sequence types

• <str>, <unicode>, <list>, <tuple>,
<range>

• New: Collection types

• <set>, <frozenset>, <dict>

Typing, (Some) Built-In
Types

18Thursday, May 9, 13

Variables

• Simple assignments

• Multiple assignments

• “Mutable” vs. “Immutable”

• We’ll see more of these as examples

19Thursday, May 9, 13

Looping and
Conditionals

• While loops

• If statements with boolean
comparisons

• Parenthetical evaluation

• or, and, not, <, <=, >, >=, ==,
is, is not

• We’ll talk more about ranges later...

20Thursday, May 9, 13

Looping and
Conditionals

• While loops

• If statements with boolean
comparisons

• Parenthetical evaluation

• or, and, not, <, <=, >, >=, ==, =, is, is not

• For loops (e.g. “for x in range(0,10):”)

• We’ll talk more about ranges later...

21Thursday, May 9, 13

Recursion

• Recursion in Python is like recursion in
BYOB

• Factorial(n)?

• IsPalindrome(word)?

• IsPalindrome is left as an exercise for
you!

22Thursday, May 9, 13

Sequences (overview)

• Str “”

• List []

• Tuple ()

• Range

23Thursday, May 9, 13

Sequences (overview)

• Str “” - immutable

• List [] - mutable

• Tuple () - immutable

• Range - mutable-ish

24Thursday, May 9, 13

Strings & String Operators

• Sequence (or “list” or “array”) of chars

• Quoting

• Single vs. double vs. triple and mixing

• Triple is 3 double quotes. “””

• Printing

• Formatted and unformatted

• Concatenation, finding length, etc.

• help(“string”)

• Slicing and slicing notation [::]

• http://docs.python.org/library/stdtypes.html#string-methods

25Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#string-methods
http://docs.python.org/library/stdtypes.html#string-methods

Lists
• Collection of any type

• Including itself!

• Indexing (BYOB: Item () of [])

• Modifying (Replace item () of [] with ())

• Slicing and slicing notation (i.e., [::])

• Exactly the same as string notation!

• Operators

• append(x), insert(i,x), count(x), sort(), etc.

• http://docs.python.org/library/stdtypes.html#mutable-
sequence-types

26Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#mutable-sequence-types
http://docs.python.org/library/stdtypes.html#mutable-sequence-types
http://docs.python.org/library/stdtypes.html#mutable-sequence-types
http://docs.python.org/library/stdtypes.html#mutable-sequence-types

Tuples (|ˈtjuːp(ə)l| :)

• Immutable

• Same as strings

• Also contains any type of element(s).

• Syntax: ()

• What are the advantages of using them?

• Faster and “Safer,”

• Can be used as Dictionary keys

• More on dictionaries later...
27Thursday, May 9, 13

Ranges

• Range syntax (start, stop, step)

• Start: Inclusive; stop: exclusive

• Results in an iterable object

• list(range(x)) is a list.

• range(start, stop) or range(stop)
also work.

• Default start is 0, Default step is 1.

• http://docs.python.org/library/stdtypes.html#xrange-type

28Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#xrange-type
http://docs.python.org/library/stdtypes.html#xrange-type

Iterators
• Syntax

• i = iter(object)

• Usage

• next(i) #In Python3!

• Python 2.x: i.next()

• Why does Python have them?

• You’ll see...

• http://docs.python.org/library/stdtypes.html#iterator-types

29Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#iterator-types
http://docs.python.org/library/stdtypes.html#iterator-types

Sequence (general)
Operators

• X in & not in Y

• + & *

• slice [::]

• len()

• min() & max()

• even map() filter() & reduce() !

• Many, many more:

• http://docs.python.org/library/stdtypes.html#typesseq

30Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#typesseq
http://docs.python.org/library/stdtypes.html#typesseq

Sets

• NO duplicate members (unique)

• Unordered

• Syntax: set([1,2,3,4]) or
set(“blah”)

• NO array-like indexing (e.g., s[0])

• Iterators are used instead...

• Faster (for large number of entries)

31Thursday, May 9, 13

Set Operators
• len(s)
• s.add(elem)
• X in & not in S

• remove & pop & -

• Iteration

• Union, intersection, isdisjoint, etc.

• Much, much more:

• help(“set”)
• http://docs.python.org/library/stdtypes.html#set

32Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#set
http://docs.python.org/library/stdtypes.html#set

Dictionaries
• Syntax

• {key:value}

• Adding elements

• dict[key]=value

• Accessing elements

• dict[key]

• Keys

• Looking for specific keys (has_key() & “in”)

• Iterating over (iterkeys())

• http://docs.python.org/library/stdtypes.html#dict
33Thursday, May 9, 13

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

How Do Dictionaries Work, and Why
Use Them?

• Hash table based

• Hash codes & array indexes

• Very fast look-up time (i.e., O(1))

• Classic trade-off:

• Speed and space

34Thursday, May 9, 13

Dictionaries = Hash
Tables

http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg

35Thursday, May 9, 13

http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg
http://en.wikipedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg

